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SUMMARY 

An algorithm is given for the numerical solution of the 

"mixed integer" linear programming problem, the problem of 

maximizing a linear form in finitely many variables constrained 

both by linear inequalities and the requirement that a proper 

Bubset of the variables assume only integral values. The 

algorithm is an extension of the cutting plane technique for 

the solution of the "pure integer" problem. 
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AN ALGORITHM FOR THE MIXED INTEQER PROBLEM 

Ralph Oomory 

i • 
The problem discussed here is an Integer programing 

problem,/i.e., the problem of maximizing 
i 
I 

/ J-n 

/ °'°  j.l °"J  J' 

subject to the inequalities 

J-n 
(1) 2 ^.J^ ^ ai,o' 1-1» ..., m 

and subject to the additional condition that some specified 

subcollection of the variables appearing above should be 

integers. 

If the Inequalities above are changed into equations in 

nonnegative variables by the addition of m "slack" variables, * 

and the whole set is enlarged to form a set in which all the 

variables are expressed In terms of the independent or "nonbaslc" 

ones, we have 

J-n 
'   z-ao,o + j^

ao,j(-tj) 

J-n 
s m  a.  + Z a  ,(-t,)      i - 1, ... , m 
1   l>o  j.i 1>J  J 

t . m — 1 (—t.) J « 1, ... . n. 
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For the sake of a more uniform notation we will rewrite this as 

J-n 
(2)      x^ m a±      + Z a±  j (-t j) i - 0, ..., m-Ki, 

J ■•X 

where the x. now are all the variables and the a. . are all 

the coefficients. 

The usual linear programming problem is solved by apply- 

ing 0. B. Dantzlg's simplex method.  In this method a Lserles 

of "pivot steps," "Gaussian eliminations," "changes of basis," 

or "changes to different sets of nonbasic variables" bring the 

equations (2) into a form in which, denoting the new coeffi- 

cients in the equations by primes, 

and 

i 

(i)  a.  > 0 i » 1, ..., m+n 
i t<j  — 

C11) a
0,j ^ ° J - 1, ..., n. 

The first condition is the condition that in the "trial solution" 

obtained by putting all the nonbar,Lc variables equal to zero, 

the values that result for all the variables are nonnegative. 

The second condition makes certain that the objective function 

is in fact maximal when the variables are given the values they 

attain in this trial solution.  The solution obtained is of course 

The usual method terminates when conditions (ii) first 
hold. It is necessary here that the pivoting continue until 
all columns J > 0 become lexicographically positive.  The 
procedure for doing this is described in [1]. 



P-1885 

3 

x. ■ a. 1 ■» 0, ..., m-m. 

This solution may very well not satisfy the Integer requirement, 

i.e., some x. that is required to be an integer is assigned the 
i 

noninteger value a.  . i,o 

If this occurs we. will be able to deduce a new inequality 

that will be satisfied by any integer solution, i.e., by any 

solution having integers where they are required, but will not 

be satisfied by the current trial solution. 

Then, Just as in [1] and [2], this new inequality will 

be added to the original set of Inequalities, and the new set 

then remaximlsed by the simplex method.  This remaximization 

is usually quite rapid as adding the new inequality maintains 

dual feasibility, and Introduces Just the one unsatisfied 

inequality. 

If the new maximum solution still contains Integer vari- 

ables which are assigned noninteger values the process is 

reptated. 

To deduce this new inequality we make use of the equation 

(3)     x±  -a^Q + v a^jC-tj) 

i 

where the x. Is an integer variable, a.  Is noninteger, and x x., o    • 
i 

the t, are the current set of nonbasic variables.  Since a, 
J i»o 

is noninteger It can be written uniquely as the sum of an 
i ii 

Integer n.  and a fractional part f,  , 0 < f, • < 1. 
1 i O 1 |U -L j O      ■■■ 
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We now Imagine that we have an integer solution to the 
ii 

problem and use x,, t. to denote the values given to the vari— 

ables in (3) by this solution. Hence 

xi ~ ai,o +S ai,J^fcp 

and using a s b to mean a and b differ by an integer (equiv— 

alence modulo 1), we have, since xi « 0 and a^  « f^ Q, 

We will group the constants on the left in (4) according 

4- ' to their sign.  Let S be the set of indices J for which a. . > 0, 
__ i 

and S the set for which a. . < 0. Then 

(5) A+ ^ + us- ^^ " f;-°- 
There are now two possibilities to consider.  Either the 

expression on the left is (1) nonnegative, or (ii) negative. 

Case (1).  Since the left aide is nonnegative and equiv- 
i i i 

alent to f . its value can only be f , or 1 + f , or 2 + f , etc. 

Hence 

f l.o * /£S+ »t.J*j 
+ f€S- "l.j'j * /cS+ «l.jV 
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Case (11). If the right-hand side la negative arid equlv— 

alent to f. It can only be f — 1, f — 2, etc. So In every 

case 

ii        it 
f.  - 1 2 2 . a. .t. + Z  a. ,t. > Z  a .t  , 

i       i 

or, multiplying by - f± </! - 
fi,0' 

i 

1,0   j€S   1 - f± ö     • 'J  J 

Now either (1) holds or (11) holds so always 

i 

(6)     f^^Va^ + ^s- r^-Kj'v 

since the right side Is the sum of two nonnegative numbers, 
i 

one of which is > f,  . — i*o 

This Inequality then 1B satisfied by any Integer solution 

but not by the present trial solution since substituting 

t. - 0 for all J Into (6), makes the right-hand side 0. 

Of course the Inequality (6) can be rewritten a3 an equation 

by Introducing a nonnegative slack s.  Then (6) becomes 

. .   •  .. « 

8 •<■> - U '^w- JC3- rrt: (-a;-)("tj; 
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In obtaining (6) we have used only the fact that x, was 

required to be an integer.  If some of the nonbaslc variables 

t. are also Integer variables, the inequality (6) can be 

improved in a manner entirely analogous to the reduction 

that Is always possible in the strictly integer problem. The 

improvement will take the form of a decrease In the coefficients 

on the right in the resulting Inequality (6). It is clear that 
i 

for fixed f4 Ä the smaller these coefficients, the stronger 1,0 

the inequality. 

Let us suppose then that some t, is required to be 
Jo        , 

integer and hence is assigned an integer value t.  in (5). 
Jo 

Changing a. . by an integer amount then changes the left 
1,Jo 

side of (5) by an integer, and hence preserves the equivalence. 
t * 

Thus we may replace a, . by any new value a a a. . and 
x'Jo ,Jo 

proceed Just as before to deduce an inequality like (6). 
* 

If a > 0, the coefficient of t, in the resulting in— 
*      #       °       ' *   • 

equality is simply a .  If a is < 0, it is -f.  / (1 — f.  )a . 

*      *   • l    ' 
Among a > 0, a • f. .  the fractional part of a, ,  clearly 

x'Jo 'Jo 
gives the smallest coefficient to t.  in the resulting in— 

equality.  (This may even be 0.)  Among a < 0, the smallest 
•   i 

coefficient is obtained from a « f.- . — 1, and is 
x'Jo 

i 

(7) fl'°,    d-f'    ). 

By  the fractional pait of both positive and negative 

numbers a. . we will mean the nonnegative fraction f. . < 1 such 

that a. . m r\*   .  + f. .  with n. .  integer. 
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To obtain the  smallest possible coefficient we choose  the 
i 

smaller of f, . and (7) which, because an expression of the 

form x/1 — x increases monotonically with x i3 seen to be 

'il0  lf fi.Jo * 
fl,o 

and 

—i*£,— ( i _ f    ) if f    > f 

i,o 

It follows that the strongest inequality is obtained by 

a simple two—stage process.  (i)  First replace coefficients 

of integer variables by their fractional parts if these are 
■ 

less than f.  , or by the fractional parts less 1 if they are 1 , o 
i 

greater than f.  .  (li)  Then deduce the Inequality (6) as l ,o 

before.  The final result obtained from the equation 

x± » a^Q + S a^jt-tj) 

by this procedure Is the inequality represented by the equation 

(8)  '       s— ^,0-Z'I,j(-tj) 

where the f. ,, all nonnegative, are given by the following 

formulae: 

»««•«*:»»««»*»'.■«-7*^ ' <««**«cje.w»»*«Mka. m**-~ ^--G~) '<■'«-i. *»-». ■■ "*'*~\ "  ' „ ■-&■■-. .. .. 
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1,0 

1 - f. 

■i,J - < 
i,o 

:i,J 
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If a, . > 0 and t. noninteger variable 

(—a. ,)  If a. . < 0 and t. nonlnteger variable 

if f. . < f.  and t. Integer variable 

i,o —ii^T— (f, ,-1) ' If f, .  > f,  and t. integer variable 
1 " Xi,o 

Equation (3) is then added and the problem is remaximlzed. 

It seems sensible to use the dual simplex method at this point 
1 

as all the a ,,  J > 1, are nonnegative, and there is only one 
1 

negative element, —f.  , in the O-column. 

If the dual simplex method is applied, the O-column is 

decreased lexicographically at the nexi step, and furthermore, 

denoting by double primes the coefficients after the next 

pivot step and by J  the column in.which the pivot step takes 

place, we have 

(9) 

a4  < n. ^ i,o — i,o 

a.   > n.  + 1 1,0 — i,o 

if a. .  > 0 
i,Jo 

If a. , < 0 
1>J0 

1 1 

where n,  is the integer part of a.  , the index 1 In (9) Is l,o °  * i,o' w/ 

that of the row figuring in equations (3) through (S). 

**■— "-"■•- '" -   ■-'■-— n 1 f r     - ■ - 1 niitf—^aaaariäiBiäetea 
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This means that after the next pivot step the value as- 

signed to x. by the new trial solution is either j> the next 

highest integer, or < the next lowest integer. 

To see this we consider the mechanism of the dual simplex 

method.  The dual simplex method will pick a pivot in the new 
i 

row represented by (8).  If the pivot element Is chosen in 

this row and in the A     column then the formula for the a..   Ä °o l,o 
that results after a pivot step is 

1 

1 
fi,oai,J0 

ai,o - al,o - -75      • 

1 
Now the formulas for f. . show that if a. .  is positive 

and t. noninteger we have 
Jo 

1   1 
fi,oai,J 

<l0> ai,o ö al,o ■?  - ni,o • 
i 1 

If a. . is negative and t, noninteger we have 
1>Jo Jo 

fi,oai,Jo I! I 
(11) a±f0 « a^Q 

t     1        1 

a, n —  f. „+ 1 « n. ,+ 1 . 1,0   i,o.     1,0 

^^- —.Vi^iiM. 
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To cover the cases when t, is an integer variable we 
Jo 

need only remember that in this case the f. ,  is deduced by 
x'Jo 

a two—stage process, part (il) of which is exactly the same as 

the process used to deduce the f, .    when t. is noninteger. 
x\Jo Jo 

Consequently if part (i) leaves a1 . unchanged, either (10) 
i 

or (11) holds Just as above. Part (i) will have a± . un- 

changed only if either 

al,j - fi,j' and fi,J ^ fi.o 
or 

ai,J < °' aii  * fi,J " 1'      and fl,J > fi,o 

Otherwise part (i) makes a change which results in a 
* 

strictly smaller final f. ..  So in these cases we have the 

strict Inequalities 

■i     i « 

al,o < nl,o lf ai,j0 > 0 

aI,o > nl,o + X " al,J0 < °- 

The remaining possibility, a. . «0, can not occur because 

a, . «o Implies f. , «0 and so f. ,       .   .  ,.,_  * *. 1,J      *     1#J i,J  can not be the pivot o o o 

element.  Thus (9) holds in all cases* 

Now (9) is exactly the property required for a finlteness 

proof—i.e., a proof that the solution is attained in a finite 

number of steps—provided that the objective function z is one 

of the Integer variables.  To see this we arrange the original 
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equations so that the Integer variables on the left in (2) 

are the first rows following the objective function z.  (This 

means that they rank higher lexicographically in the dual 

simplex method.) Oiven property (9), the reasoning in the 

first finitness proof in [1] (pp. 33-35) now goes through 

unchanged. Of course one must stop now on attaining the 

required integer values in the O-column, as an all—integer, 

matrix is not generally obtained. 



r-isro 

ij 

1.     0o.*v.u\7,; Ralph   K. ,    "Al»   Al..".'■!•:. th:"   :   -r   1.'.:■■■.V'«'  ."•! •••**.l-,;.r.   to 
Llnva.r Pi-oi.-;i\i.v.3 , "  P-^l^iriL/i^iii.^"1'-1   Ü- L^ii-J} 

,s<. Project  Technical  7T f."r".   ..>.    -,   ..c ■»• ( ,   i.o 

2.     Beale,/E.   M.   L. ,   "A M-JChcri of 3'lvi:;;;   ULrwir Pro^rar.u.ilnt; 
Problems When  Sosr.e  ,!"5ut  Not   AI.,   of  tho   Variablen  Mu:-t 
Take'  Integral   Value.»,''   r.-a11:■■■-'-.;:■• 1   '-"•":nr.iqu»:>:;   Hor.varch 
Qroiip,   Princeton   University   (: .an j..criot). 




